Band Edge Localization Beyond Regular Floquet Eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues

We prove a localization theorem for continuous ergodic Schrödinger operators Hω := H0+Vω, where the random potential Vω is a nonnegative Anderson-type perturbation of the periodic operator H0. We consider a lower spectral band edge of σ(H0), say E = 0, at a gap which is preserved by the perturbation Vω . Assuming that all Floquet eigenvalues of H0, which reach the spectral edge 0 as a minimum, ...

متن کامل

Eigenvalues and edge-connectivity of regular graphs

In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than d − 2(k−1) d+1 , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3 − (d− 3)x2 − (3d− 2)x− 2 = 0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if...

متن کامل

Edge-disjoint spanning trees and eigenvalues of regular graphs

Partially answering a question of Paul Seymour, we obtain a sufficient eigenvalue condition for the existence of k edge-disjoint spanning trees in a regular graph, when k ∈ {2, 3}. More precisely, we show that if the second largest eigenvalue of a d-regular graph G is less than d − 2k−1 d+1 , then G contains at least k edge-disjoint spanning trees, when k ∈ {2, 3}. We construct examples of grap...

متن کامل

Edge-Connectivity, Eigenvalues, and Matchings in Regular Graphs

In this paper, we study the relationship between eigenvalues and the existence of certain subgraphs in regular graphs. We give a condition on an appropriate eigenvalue that guarantees a lower bound for the matching number of a t-edge-connected d-regular graph, when t ≤ d − 2. This work extends some classical results of von Baebler and Berge and more recent work of Cioabă, Gregory, and Haemers. ...

متن کامل

Localisation for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues∗

We prove a localisation theorem for continuous ergodic Schrödinger operators Hω := H0 + Vω, where the random potential Vω is a nonnegative Anderson-type random perturbation of the periodic operator H0. We consider a lower spectral band edge of σ(H0), say E = 0, at a gap which is preserved by the perturbation Vω. Assuming that all Floquet eigenvalues of H0, which reach the spectral edge 0 as a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2020

ISSN: 1424-0637,1424-0661

DOI: 10.1007/s00023-020-00911-7